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Green’s Function Based Simulation of the Optical
Spectrum of Multisection Lasers

Hans Wenzel

Abstract—A new approach for the calculation of the optical
spectrum of semiconductor lasers is presented. It is based on a
solution of the inhomogeneous coupled wave equations using the
Green’s function method. The spontaneous emission is modeled by
Langevin noise functions. In contrast to previous theories, lasers
with gain-coupled distributed feedback sections are properly
described. The theoretical model is used in a fitting procedure for
parameter extraction.

Index Terms—Amplified spontaneous emission, distributed
feedback (DFB) laser, Green’s function method.

I. INTRODUCTION

T HE SPECTRUM of the amplified spontaneous emis-
sion (ASE), measured at the facets of semiconductor

lasers below threshold, contains important information about
fundamental laser parameters that are difficult to access
otherwise. Among these parameters are those which describe
the properties of the semiconductor active medium such as
the optical gain [1] and the refractive index, as well as those
that are closely related to the optical cavity itself such as the
reflectivities of the facets, parasitic reflections within the cavity
[2], and coupling coefficients of Bragg gratings in distributed
feedback (DFB) lasers.

To our knowledge, a first calculation of the ASE of index-cou-
pled DFB lasers was performed by Soda and Imai [3]. They used
the standard procedure of summing up an infinite number of
reflections of radiation originating at positioninto a conver-
gent geometric series to obtain the emitted radiation. Later, this
method was adapted and improved by many others; cf. [4]–[7],
and [8]. The disadvantage of this approach is that continuously
varying refractive indexes and other parameters can only be
treated if the cavity is subdivided into a number of sections
where all parameters are set constant. Additionally, the spectral
shape of the local spontaneous emission is mostly neglected.

Another popular method was introduced by Henry [9]. He
treated spontaneous emission as a Langevin function noise term
in the wave equation and solved the resulting inhomogeneous
equation by calculating its Green’s function in terms of the
Wronskian of the homogeneous equation. This method was
used in [10]–[12], too. The disadvantage of this method is the
need to calculate the Wronskian of the wave equation.

Schatzet al. calculated the Green’s function directly, which
resulted in a rather simple expression for the ASE spectrum of
single-section DFB lasers [13]. Further models are based on
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3 3 transfer matrices [14], classical electrical network theory
[15], and spontaneous emission current sheets [16].

In addition to the different approaches to treat the sponta-
neous emission, there are essentially two methods to solve the
wave equation for the calculation of the ASE. One method is
to solve the wave equation directly by means of transfer ma-
trices [5], [8], and the other one is to convert the second-order
differential equation into two first-order equations for the am-
plitudes of the forward- and backward-propagating waves by
an averaging procedure [17]. For DFB lasers, both equations
are coupled by the so-called coupling coefficient. Some authors
using the transfer-matrix method regard the coupled wave equa-
tions to be less accurate. However, detailed investigations have
shown that both methods are equivalent as far as certain condi-
tions are fulfilled [17], [18]. The advantage of the coupled wave
equations is that a DFB laser containing thousands of high- and
low-index regions can be discretized in much larger steps.

If the laser parameters the ASE spectrum depends on are
treated as unknown variables in the theoretical models, it is pos-
sible to determine them by comparing calculated and measured
spectra. This has been demonstrated in [6], [7], [19], and [20].
For single-section DFB lasers, a commercial [21] as well as
a free [22] computer program for parameter extraction is now
available.

Despite this success, there is still a controversy about the cor-
rect model of the ASE to be used, especially for gain-coupled
DFB lasers. In [8], it was claimed that from a quantum-mechan-
ical point of view, an interference term between forward- and
backward-propagating spontaneously emitted photons should
appear in the expression for the ASE, and that this term is absent
in all references except [14]. Actually, the interference term is
included in the Green’s function method described in [9] and the
papers based on this article, as it was later corrected by Morrison
and Cassidy [23]. However, the interference term has not so far
been included in most of the calculations of the ASE below
threshold and, nevertheless, a good agreement with measure-
ments was found. Therefore, the question arises whether this
term is important or not.

The aim of this paper is the derivation of a new Green’s func-
tion based solution of the inhomogeneous coupled wave equa-
tions. Spontaneous emission is introduced by Langevin noise
functions. The laser cavity may consist of an arbitrary number of
active and passive sections with and without Bragg gratings. The
theoretical model is consistent with the well-established theory
for the spectral linewidth, the sidemode suppression ratio, and
other noise properties of the lasing mode of multisection lasers
including gain-coupled DFB lasers; cf. [24], [25] and [26] and
the references therein. The theoretical model is used in a param-
eter extraction program and its applicability is demonstrated for
a few examples.
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II. THEORETICAL MODEL

A. Basic Equations

Our aim is to calculate the spontaneously emitted optical
field propagating along the axis of a one-dimensional mul-
tisectional cavity filled at least partially with a semiconductor
active medium. We assume that in the transverse plane
only a single guided mode exists, and that only the longitudi-
nally varying part is time-dependent. The time-dependence is
expressed via a Fourier integral. Hence, the main transverse
electric and magnetic field components are given by

(1)

where for TE-like modes, for example, and
hold. The transverse field functions (mode distributions)

and , which may depend parametrically on the
longitudinal coordinate, are normalized according to

(2)

where denotes the complex conjugate and the upper (lower)
sign holds for TE (TM) modes. The Fourier components are de-
composed into waves propagating forward and backward along
the longitudinal laser axis

(3)

Here, is a real valued reference propagation factor. For DFB
sections, for example, it is given by , where is the order
and the period of the Bragg grating. The slowly varying am-
plitudes of the forward- and backward-propagating waves
and , respectively, obey the so-called coupled wave equa-
tions [17], [18], [27]

(4)

where we introduced the vector notation

(5)

The term

(6)

on the right-hand side of (4) consists of Langevin noise func-
tions, which model the randomly distributed spontaneous emis-
sion events. Details are presented in Section II-B.

The matrix operator in (4) reads

(7)

where is the relative propagation
coefficient. The imaginary part can be written as

(8)

where is the modal gain and the modal loss coefficient, both
averaged over one grating period.

The coupling coefficients are complex valued. The real and
imaginary parts may depend additionally on a common phase

(9)

In this way, index, gain, and absorption coupled DFB sections
with first or higher order Bragg gratings can be accounted for.
Note that the signs of the real and imaginary parts of ,
and , respectively, have to be chosen properly. For example,
in the case of an antiphase gain grating, must be ensured
if has been chosen. For a second-order index grating,

holds, and the sign of depends on the duty
cycle of the grating [28]. The phase allows a modeling of
phase-shifted gratings. For a second-order grating (and similarly
for higher- order gratings), the imaginary part of the coupling
coefficient due to first-order radiation has to be added to
the relative propagation coefficient1 [28].

At the facets of the laser, we assume the usual reflecting
boundary conditions for the propagating wave amplitudes

(10)

(11)

At an interface between two sections located at , the
following most general transition condition for the amplitudes
on both sides of the interface is assumed to be valid:

(12)

If there is no scattering loss or absorption at the interface, the
energy conservation condition requires and

.

B. Langevin Noise Functions

The ensemble averages of the Langevin noise functions
vanish

(13)

and the correlation functions are given by [24] and [27]

(14)

All other combinations of and their complex conjugates can
be assumed to be uncorrelated, except for gain-coupled DFB
sections where additionally

(15)

together with its complex conjugate holds. The reason for the
fact, that except for gain-coupled DFB sections the cross cor-
relation between the Langevin noise functions for the forward-
and backward-propagating waves can be neglected within the
coupled wave formalism is the rapidly oscillating term
appearing in the calculation of the correlation functions between

and (compare [29]). However, in gain-coupled DFB
sections, the modal gain before averaging

1Identical only for gratings with inversion symmetry.
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is spatially modulated by the same period that leads to a
cancellation of the rapidly oscillating term.

According to [24] and [27], the diffusion coefficients are
given by

(16)

(17)

In (16) and (17), is the spontaneous emission factor,
Planck’s constant divided by the imaginary part of
the coupling coefficient of a gain grating. For gain-guided
lasers, the diffusion coefficients have to be multiplied with
Petermann’s spontaneous emission enhancement factor[30].

C. Solution

For the following, we define the inner product

(18)

The operator is symmetric [31], i.e., within the product (18)
it can be interchanged, so that

(19)

holds for any two-component functions and that obey
the boundary conditions (10) and (11). Using this inner product
(18), we can write the solution of (4) as

(20)

where the Green’s functions

(21)

(22)

obey the following inhomogeneous coupled wave equations
with Dirac’s -function as source term

(23)

(24)

subject to the same boundary conditions (10) and (11) (for both
arguments) as satisfied by . The proof that (20) solves (4) is
given in Appendix A.

D. Calculation of Optical Spectrum

Taking into account the normalization (2), the power spec-
tral density of the forward- and backward-propagating waves is
given by [9], [32]

(25)

where

(26)

Introducing (26) into (25) yields

(27)

To this end, the power spectral density can be evaluated with
the help of the solution (20) of the coupled wave equations
with Langevin noise sources, taking into account the correla-
tion functions (14) and (15). Here, we are interested in the ASE
emerging from the left facet , which can be expressed as

(28)

Equation (28) represents the main result of this paper. It consists
of two terms. The first term corresponds to what is obtained,
for example, by the multireflection method [3] or the Green’s
function method for the wave equation [10] neglecting the in-
terference between forward- and backward-propagating sponta-
neously emitted photons. The second term arises from the cross
correlation (15) present only for gain-coupled DFB sections. For
Fabry–Perot (FP) as well as index and absorption coupled DFB
sections, within the coupled wave formalism there is no inter-
ference term for the reasons discussed above. This finding is in
agreement with [8] where, although the importance of the inter-
ference term was pointed out, it was found that this term only
has an impact on the spectra of gain-coupled DFB lasers. The
interference term has its analog in a corresponding term in the
stimulated recombination rate (standing wave effect [27]).

It should be mentioned that (28) holds only as far as the stim-
ulated recombination can be omitted so that the carrier fluctu-
ations have no influence on the photon fluctuations, i.e., below
threshold or beyond the lasing mode above threshold.

It is instructive to compare (28) with the corresponding ex-
pression derived in [33], (60) on the basis of a quantum mechan-
ical nonequilibrium Green’s function technique for the photons
and the carriers. The polarization function in [33] is
proportional to and the retarded Green’s function there is
closely related to and .

To close this section, we show in the following how the
Green’s function can be calculated
efficiently. It solves the homogeneous coupled wave equation

(29)

subject to an inhomogeneous boundary condition at

(30)

At , the homogeneous boundary condition (11) remains.
The proof is given in Appendix B.

The Green’s function can be calculated, for example, by a
transfer matrix approach, starting at and ending at .
If , and are set constant within one section of
the cavity, (29) can be solved analytically, and the remaining
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(a) (b)

Fig. 1. Measured (solid) and fitted (dashed) ASE spectrum of a truncated-quantum-well DFB laser (a) with interference term and (b) without interference term.

integrals in (28) can be evaluated. The resulting expression for
the ASE has to be divided by in order
to accomplish the boundary condition (30). For a single-section
FP laser, the whole procedure is demonstrated in Appendix C.
Note that if the laser threshold is
approached for some, the ASE goes to infinity at this .

E. Fitting

The numerical fitting procedure is performed by minimizing
the sum of the squared differences between the calculated and
the measured spectra values by varying given laser parameters.
If is the number of sampling wavelengths,is the value of
the spectrum measured at sampling wavelength, and is a
vector with the parameters to be determined, then either

(31)

or

(32)

is minimized by varying the components of. Especially for
DFB lasers, the logarithms of the spectra values should be em-
ployed in order to attach sufficient importance to the stopband.

The minimization can be performed on the basis of a local
or a global numerical search. In contrast to a local search, a
global search necessitates no guess values for the parameters
to be determined, on the expense of enhanced computational
time. Here, we employ a global search using a stochastic deriva-
tive-free algorithm, which is combined with a local search [34].
Usually, several minima are found. Among them is hopefully
the minimum with the smallest value of or cor-
responding to the best fitted spectrum. In order to perform the
minimization, the theoretical model has to be parameterized.
The corresponding functions are compiled in Appendix D. The
more parameters are known in advance, the better the fitting pro-
cedure works and the more reliable the result is.

III. FITTING RESULTS

A. Gain-Coupled DFB Laser

The first example refers to a truncated-quantum-well DFB
laser emitting near 1550 nm [35], where we have investigated

TABLE I
LIST OF PARAMETERS FORGAIN-COUPLED DFB LASER OFFIG. 1. BOLD

FACE: FITTED RESULTS

the influence of on the quality of the fit and the parameters
to be extracted. Fig. 1 shows the measured spectrum and the best
fit taking into account the interference term (a) and neglecting
it (b). Both variants allow a good fit of the measured spectrum,
although the overall agreement between the measured and the
fitted spectrum is slightly better if . This is supported
by the value of , shown in the first row of Table I. The imag-
inary part of the coupling coefficient and the gain peak
differ strongly between both fitting variants; cf. Table I. There-
fore, with previous fitting procedures which set pos-
sibly deviating values of were obtained. Note that the factor

amounts only about one half of .

B. Index-Coupled DFB Laser With Second-Order Grating

The next example is a high-power index-coupled DFB laser
emitting near 860 nm [36]. It has a second-order grating with a
duty cycle and a small coupling coefficient 1 cm .
The facets are anti- and high-reflection coated. The measured
and the fitted spectrum is depicted in Fig. 2 and the determined
parameters are collected in Table II. By virtue of the fit, for
the first time we were able to reveal that our antireflection
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Fig. 2. Measured (solid) and fitted (dashed) ASE spectrum of an
index-coupled second-order DFB laser.

TABLE II
LIST OF PARAMETERS FORSECOND-ORDER DFB LASER OFFIG. 2. BOLD

FACE: FITTED RESULTS

coating yields reflection coefficients 10 . The value of
obtained by fits of spectra measured at different injection

currents below threshold varies between 8 and 910 . For
FP lasers, it is difficult to extract the reflection coefficients
from the spectra, because according to (C5) the peak-to-valley
ratio of the longitudinal modes depends only on the net gain

.

C. Tapered FP Laser

The last example treats a 2750-m-long tapered laser con-
sisting of a 750-m-long index-guided straight section and a
2000- m-long gain-guided tapered section [37]. Between both
sections, there is a waveguide discontinuity that leads to a mod-
ulation of the envelope of the spectrum shown in Fig. 3. The
reflection coefficient at the discontinuity was fitted to be about

10 . If we Fourier-transform the spectrum over a larger
wavelength range and scale the abscissa properly, we obtain
major peaks at multiples of the cavity length. The modulation
of the spectrum leads to additional peaks between them. They
occur exactly at the positions of the discontinuity (see Fig. 4)
measured from either side of the cavity. The Fourier transformed
measured spectrum exhibits only one additional peak, the reason

Fig. 3. Measured (solid) and fitted (dotted) ASE spectrum of a tapered FP
laser.

Fig. 4. Fourier transformation of the spectra of Fig. 3 taken between 793 and
811 nm. The abscissa has been scaled in such a way that the position of the
second major peak coincides with the total cavity length.

of which is not clear. This method of analyzing ASE spectra of
FP lasers can be used for defect recognition [2], [38]–[40].

IV. CONCLUSION

Based on a new method to solve the inhomogeneous coupled
wave equations, a new expression for the ASE of multisection
lasers is derived. For gain-coupled DFB lasers, and only for that,
it contains an additional term due to cross correlation of for-
ward- and backward-propagating spontaneously emitted pho-
tons. The theoretical model has been successfully integrated in
a parameter extraction program. Due to its simplicity, it can be
easily implemented in numerical laser simulators that solve the
coupled-wave equations.

APPENDIX A

In this appendix, we prove that (20) is a solution of (4) taking
into account (23) and (24). Using the fact that the Green’s func-
tions are symmetric with respect to an exchange of their argu-
ments, , and introducing (4) into the
first row of (20), we obtain

(A1)



870 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 3, MAY/JUNE 2003

where we exploit the symmetry property (19) of the operator
and insert (23). The second row of (20) can be proven similarly.

APPENDIX B

In this appendix, we prove the equivalence of (24) for
and (29) and (30). If we integrate (24) in a small interval

around , we obtain

(B1)

and

(B2)

where we omitted all unimportant terms, which vanish if we take
the limit . If we place the left facet at , we can
derive from (B1) at taking into account (10) and (B2)

(B3)

Hence, in the limit for , the Green’s function
obeys the inhomogeneous boundary condition (30).

APPENDIX C

In this appendix, we derive the ASE spectral density of a
single-section FP laser in order to show the equivalence to
former expressions. Let us set . Then from (11),

follows. The solution of (29) is

(C1)

and

(C2)

The integration yields

(C3)

The integral has to be divided by

(C4)

in order to accomplish the boundary condition (30). After some
rearrangements, the ASE emerging from the left facet is found
to be given by

(C5)

This expression is equivalent to [9, eq. (64)], except for an unim-
portant prefactor.

APPENDIX D

In this appendix, the model functions to be used in the fit-
ting procedure are compiled. Instead of frequency, the corre-
sponding vacuum wavelengthis used as a variable.

The amplitude reflection coefficients at the facets are given
by

(D1)

with the power reflection coefficients and . Note that the
phases and depend on . A discontinuity is characterized
by its power reflection and transmission coefficientsand ,
as well as a phase

(D2)

The relative propagation coefficient including the radiation
loss consists of a real part and an imaginary part proportional to
the relative effective index and gain, respectively. The real part
is linearized with respect to frequency so that an effective group
index is introduced. The spectrum of the imaginary part is
approximated to be parabolic. Therefore

(D3)

where is a reference wavelength, describes an additional
index variation, is the peak value of the imaginary part
at wavelength , and is the curvature of its wavelength
dependence.

The spectrum of the spontaneous emission is modeled by a
Lorentzian with full width at half maximum and center
wavelength . Therefore, the diffusion coefficients (16) and
(17) are given by

(D4)

(D5)

where and govern the strength of the spontaneous
emission.

ACKNOWLEDGMENT

The author would like to thank J. Kreissl, HHI Berlin, for
providing the experimental data of the gain-coupled DFB laser
and A. Klehr, FBH Berlin, for the measurements of the spectra
of the index-coupled second-order DFB laser and the tapered
FP laser.

REFERENCES

[1] B. Hakki and T. Paoli, “Gain spectra in GaAs double-heterostructure
injection lasers,”J. Appl. Phys., vol. 46, pp. 1299–1306, Mar. 1975.

[2] L. F. D. Chiaro, “Damage-induced spectral perturbations in multilongi-
tudinal-mode semiconductor lasers,”J. Lightwave Technol., vol. 8, pp.
1659–1669, Nov. 1990.

[3] H. Soda and H. Imai, “Analysis of the spectrum behavior below the
threshold in DFB lasers,”IEEE J. Quantum Electron., vol. 22, pp.
637–641, May 1986.



WENZEL: GREEN’S FUNCTION BASED SIMULATION OF THE OPTICAL SPECTRUM OF MULTISECTION LASERS 871

[4] T. Makino and J. Glinski, “Transfer matrix analysis of the amplified
spontaneous emission of DFB semiconductor laser amplifiers,”IEEE
J. Quantum Electron., vol. 24, pp. 1507–1518, Aug. 1988.

[5] S. Hansmann, “Transfer matrix analysis of the spectral properties of
complex distributed feedback laser structures,”IEEE J. Quantum Elec-
tron., vol. 28, pp. 2589–2595, Nov. 1992.

[6] G. Morthier, K. Sato, R. Baets, T. K. Sudoh, Y. Nakano, and K. Tada,
“Parameter extraction from subthreshold spectra in cleaved gain- and
index coupled DFB LDs,” inTech. Dig. OFC’95, Mar. 1995, pp.
309–310.

[7] T. Nakura and Y. Nakano, “LAPAREX—An automatic parameter ex-
traction program for gain- and index-coupled distributed feedback semi-
conductor lasers, and its application to observation of changing cou-
pling coefficient with currents,”IEICE Trans. Electron., vol. E83-C, pp.
488–495, Mar. 2000.

[8] G. B. Morrison and D. Cassidy, “A probability-amplitude transfer ma-
trix model for distributed-feedback laser structures,”IEEE J. Quantum
Electron., vol. 36, pp. 633–640, June 2000.

[9] C. Henry, “Theory of spontaneous emission noise in open resonators and
its application to lasers and optical amplifiers,”J. Lightwave Technol.,
vol. 4, pp. 288–297, Mar. 1986.

[10] T. Makino, “Transfer-matrix formulation of spontaneous emission noise
of DFB semiconductor lasers,”J. Lightwave Technol., vol. 9, pp. 84–91,
Jan. 1991.

[11] G.-H. Duan, “Generalized noise analysis of spatially inhomogeneous
laser amplifiers,”Opt. Lett., vol. 18, pp. 275–277, Feb. 1993.

[12] T. Makino, “Amplified spontaneous emission model for quantum-well
distributed feedback lasers,”IEEE J. Quantum Electron., vol. 33, pp.
1010–1017, June 1997.

[13] R. Schatz, E. Berglind, and L. Gillner, “Parameter extraction from DFB
lasers by means of a simple expression for the spontaneous emission
spectrum,”IEEE Photon. Technol. Lett., vol. 6, pp. 1182–1184, Oct.
1994.

[14] J.-P. Weber and S. Wang, “A new method for the calculation of the emis-
sion spectrum of DFB and DBR lasers,”IEEE J. Quantum Electron., vol.
27, pp. 2256–2266, Oct. 1991.

[15] E. Berglind and L. Gillner, “Optical quantum noise tread with clas-
sical electrical network theory,”IEEE J. Quantum Electron., vol. 30, pp.
846–853, Mar. 1994.

[16] W. Fang, A. Hsu, S. L. Chuang, T. Tanbun-Ek, and A. M. Sergent, “Mea-
surement and modeling of distributed-feedback lasers with spatial hole-
burning,”IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 547–554,
Apr. 1997.

[17] U. Bandelow and U. Leonhardt, “Light propagation in one-dimensional
lossless dielectrica: Transfer matrix method and coupled mode theory,”
Opt. Commun., vol. 101, pp. 92–99, Aug. 1993.

[18] H.-J. Wünsche, U. Bandelow, and H. Wenzel, “Calculation of combined
lateral and longitudinal in�=4 shifted DFB lasers,”IEEE J. Quantum
Electron., vol. 29, pp. 1751–1760, June 1993.

[19] J. Skagerlund, F. Pusa, O. Sahlen, L. Gillner, R. Schatz, P. Granestrand,
L. Lundqvist, B. Stoltz, J. Terlecki, F. Wahlin, A.-C. Mörner, J. Wallin,
and O. Öberg, “Evaluation of an automatic method to extract the grating
coupling coefficient in different types of fabricated DFB lasers,”IEEE
J. Quantum Electron., vol. 34, pp. 141–146, Jan. 1998.

[20] G. M. D. Cassidy and D. M. Bruce, “Facet phases and sub-threshold
spectra of DFB lasers: Spectral extraction, features, explanations, and
verification,” IEEE J. Quantum Electron., vol. 37, pp. 762–769, June
2001.

[21] LASFIT—A laser diode parameter extractor [Online]. Available:
http://www.photond.com/products/lasfit/lasfit.htm

[22] LAPAREX—A laser parameter extraction program [Online]. Available:
http://www.ee.t.u-tokyo.ac.jp/~nakano/lab/LAPAREX/

[23] G. Morrison and D. Cassidy, “A probability-amplitude transfer-matrix
method for calculating the distribution of light in semiconductor lasers,”
IEEE J. Quantum Electron., vol. 39, pp. 431–437, Mar. 2003.

[24] B. Tromborg, H. Lassen, and H. Olesen, “Traveling wave analysis
of semiconductor lasers: Modulation response, mode stability, and
quantum mechanical treatment of noise spectra,”IEEE J. Quantum
Electron., vol. 1994, pp. 939–956, Apr. 1994.

[25] F. Randone and I. Montrosset, “Analysis and simulation of gain-coupled
distributed feedback semiconductor lasers,”IEEE J. Quantum Electron.,
vol. 31, pp. 1964–1973, Nov. 1995.

[26] G. Morthier, R. Baets, A. Tsigopoulos, T. Sphicopoulos, F. Tsang, J.
E. Carrol, H. Wenzel, A. Mecozzi, A. Sapia, P. Correc, S. Hansmann,
H. Burkhard, A. Paradisi, I. Montrosset, H. Olesen, E. E. Lassen, R.
Schatz, and H. Bissesur, “Comparison of different DFB laser models
within the European COST 240 collaboration,”Proc. Inst. Elect. Eng. J.
Optoelectron., vol. 141, pp. 82–88, 1994.

[27] R. G. Baets, K. David, and G. Morthier, “On the distinctive features of
gain coupled DFB lasers and DFB lasers with second-order grating,”
IEEE J. Quantum Electron., vol. 29, pp. 1792–1798, June 1993.

[28] A. Shams-Zadeh-Amiri, J. Hong, X. Li, and W.-P. Huang, “Second and
higher order resonant gratings with gain or loss—Part I: Green’s func-
tion analysis,”IEEE J. Quantum Electron., vol. 36, pp. 1421–1430, Dec.
2000.

[29] H. Olesen, B. Tromborg, X. Pan, and H. Lassen, “Stability and dynamic
properties of multi-electrode laser diodes using a Green’s function ap-
proach,”IEEE J. Quantum Electron., vol. 1993, pp. 2282–2301, Aug.
1993.

[30] H. Wenzel and H.-J. Wünsche, “An equation for the amplitudes of the
modes in semiconductor lasers,”IEEE J. Quantum Electron., vol. 30,
pp. 2073–2080, Sept. 1994.

[31] H. Wenzel, U. Bandelow, H.-J. Wünsche, and J. Rehberg, “Mechanisms
of fast self pulsations in two-section DFB lasers,”IEEE J. Quantum
Electron., vol. 32, pp. 69–78, Jan. 1996.

[32] C. Henry, “Phase noise in semiconductor lasers,”J. Lightwave Technol.,
vol. 4, pp. 298–311, Mar. 1986.

[33] M. Pereira, Jr. and K. Henneberger, “Green’s function theory for
semiconductor-quantum-well laser spectra,”Phys. Rev. B, vol. 53, pp.
16 485–16 496, June 1996.

[34] Optimization Package GLOBAL by Tibor Csendes [Online]. Available:
http://users.bigpond.net.au/amiller/

[35] J. Kreissl, private communication.
[36] H. Wenzel, M. Braun, G. Erbert, and G. Tränkle, “High-power DFB

lasers,” inTech. Dig. CLEO 2002, May 2002, p. 596.
[37] B. Sumpf, R. Hülsewede, G. Erbert, C. Dzionk, J. Fricke, A. Knauer,

W. Pittroff, P. Ressel, J. Sebastian, H. Wenzel, and G. Tränkle, “High-
brightness 735 nm tapered diode lasers,”Electron. Lett., vol. 38, pp.
183–184, Feb. 2002.

[38] B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, and H. C. Sigg, “A
superluminescent diode at 1.3�m with very low spectral modulation,”
IEEE J. Quantum Electron., vol. 30, pp. 703–711, Mar. 1994.

[39] D. Hofstetter and R. L. Thornton, “Measurement of optical cavity prop-
erties in semiconductor lasers by Fourier analysis of the emission spec-
trum,” IEEE J. Quantum Electron., vol. 34, pp. 1914–1923, Oct. 1998.

[40] A. Klehr, G. Beister, G. Erbert, A. Klein, J. Maege, I. Rechenberg, J.
Sebastian, H. Wenzel, and G. Tränkle, “Defect recognition via longi-
tudinal mode analysis of high power fundamental mode and broad area
edge emitting laser diodes,”J. Appl. Phys., vol. 90, pp. 43–47, July 2001.

Hans Wenzelreceived the Dipl. and Ph.D. degrees
in physics from Humboldt-University, Berlin,
Germany, in 1986 and 1991, respectively. His
thesis dealt with the electrooptical modeling of
semiconductor lasers.

From 1991 to 1994, he was involved in a research
project on the three-dimensional simulation of DFB
lasers. In 1994, he joined the Ferdinand-Braun-In-
stitut für Höchstfrequenztechnik, Berlin, Germany,
were he is engaged in the development of high-power
semiconductor lasers. His main research interests

include the analysis, modeling, and simulation of optoelectronic devices.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


