A computational analysis of the impact of thin undoped channels in surface-related current collapse of AlGaN/GaN HEMTs
C. Zervos1, P. Beleniotis1 and M. Rudolph1,2
Published in:
Semicond. Sci. Technol., vol. 39, no. 9, pp. 095009, doi:10.1088/1361-6641/ad689c (2024).
Abstract:
This study provides an insight into the impact of thin purely undoped GaN channel thickness (tch) on surface-related trapping effects in AlGaN/GaN high electron mobility transistors. Our TCAD study suggests that in cases where parasitic gate leakage is the driving trapping mechanism that promotes the injection of electrons from the Schottky gate contact into surface states, this effect can be alleviated by reducing tch of the undoped GaN channel. We show that by decreasing tch from 130 to 10 nm, devices exhibit a reduction in gate-related current collapse under the specific class-B RF operating bias conditions as a consequence of a substantial decrease in the off-state gate leakage with reducing tch. Large-signal simulations revealed an increase by 3 W mm−1 and about 12% output power and power-added efficiency due to the decrease of gate-related collapse. This work, for the first time, highlights the role of a proper purely undoped GaN tch selection to alleviate gate-related surface trapping in the design of GaN-based microwave power amplifiers.
1 Brandenburg University of Technology Cottbus-Senftenberg (BTU), Cottbus, Germany
2 Ferdinand-Braun-Institut, Berlin, Germany
Keywords:
GaN HEMT, collapse, TCAD, large signal, channel thickness
© 2024 The Author(s). Published by IOP Publishing Ltd
Original Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Full version in pdf-format.